测不准原理

2025-05-18 18:55:38
推荐回答(4个)
回答1:

1、你对“测量”的理解有点偏颇。既然说测量,就是人为的,是不可能不对测量结果产生影响的。拿霍金的话来说就是:“我们仍然可以想像,对于一些超自然的生物,存在一组完全地决定事件的定律,这些生物能够不干扰宇宙地观测它现在的状态。然而,对于我们这些芸芸众生而言,这样的宇宙模型并没有太多的兴趣。”能够不干扰却能获知状态的不是人,那属于“神”的范畴。
2、现实生活中的测量都是把不必要的影响量忽略掉的,比如说测量身高时因为尺子的质量对你身高的影响对于只想精确到厘米的你毫无意义,同样也把不必要的小数位数给忽略了,比如说微米、纳米对你身高同样毫无意义——你在填写身高的时候是不可能写上去的。可到了量子物理学的时候,这些就是必不可少的了。(实际上在量子物理学对于无法观测到的影响量、无法达到的位数一样是要忽略的,这被叫做奥铿剃刀原理)
3、“测位置测得越准”,并不是说你能获得位置的准确真值,要知道,小数点后面的位数可是无限多的!你只能不断的获得更接近位置真值,这样的结果却使动量更加的不确定。(但粒子位置的不确定性乘上粒子质量再乘以速度的不确定性不能小于一个确定量——普郎克常数)
按你可以理解的欧姆定律来说,对于“理想的闭合线圈”——电压一定,电阻一定,则电流也一定,反之依然。如果你试图对这样的“理想的闭合线圈”(如果真的有的话)测量任何一个量,你都开始对其产生干扰,你是无法获得内阻为0(既无限小,小数点后所有的位数都为0)的电流表的,同样这世界上也没有内阻无限大的电压表的存在。
所以当现实中只有光子这一可控的最小的“尺”的时候,科学家为了说明问题举例时也只能用光子了,这和你说的“测量方法失误”是没有关系的。
4、就是退一万步说,出现了“不用光子的情况下测量”的情况(要能找到的话赶快申请诺贝耳奖哦),粒子的位置和动量具有的不确定性一样是符合测不准原理的。这是由粒子的波粒二重性决定的——量子粒子即有“波”的性质(它们没有确定的位置,而是被“抹平”成一定的几率分布),同时还具有“粒”的性质(它只能以量子的形式被发射或吸收)。这些特性都被不同于测不准原理的其他量子物理实验所得出,并被验证。
5、看来你对量子物理发生兴趣,也比较年轻,也许对下面的材料更感兴趣:
量子理论的主要创立者都是年轻人,1927年海森堡首次提出并证明了量子力学的“测不准原理”——时年26岁。1925年,也就是量子理论发展的黄金年,泡利25岁,海森堡和恩里克•费米24岁,狄拉克和约当23岁。薛定谔是一个大器晚成者,36岁。

回答2:

错误

*对于uncertainty
principle比较确切的
译法
是不确定性原理,“测不准”是不太确切的旧译。
不确定性原理是量子力学的基本原理之一,它表明无论测量
手段
如何精确,对任何
共轭物理量
中一个量的精确测量会导致
系统状态
的改变而使另一
物理量
误差
增大。由于存在涨落,共轭物理量(如动量和位置、能量和时间、角动量和角度)中两个量的误差乘积不小于某一
常数
。这是通过
理论
上证明的原理,不能通过测量
手法
的改变避免。
“其实一个粒子有它客观的真实的具体的准确的位置”是关于本体论的
观点
。目前物理学界普遍对此持谨慎态度,因为根本无法证实。如果同意
科学理论
必须可能被证伪,那么这不是
物理学
需要讨论的问题,而属于形而上的
范畴

回答3:

我也是不太懂得这里面的原因,但我挺赞成你后面的观点的.应该说用别的方法是可以测准的.
动量是物体质量与速度的乘积.是解决一些牛顿运动定理解决不了的问题的一种方法.

回答4:

动量等于物体的质量乘以物体的运动速度。